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Abstract

A unique ASIC was designed implementiﬁg the Haar Wavelet transforrﬁ for
image compr&_a_ssion/décompression. ASIC operations include performing the Haar
wavelet transform on a 512 by 512 square pixel image, preparing the image for -
transmission by quantizing and thresholding the transforméd data, and" performing the
inverse Haar wavelet transform, returning the original image with only minor .
degradation. The ASIC is based on an existing foﬁr-chip FPGA implerﬁentation.
Implementing the design using a dedicated ASIC enhances the speed, decreases‘ chip . .
count to a single die, and uses significantly less pdwer compared to the FPGA |
implementation. A reductjon of RAM accesses was realized and étra&eoff between
states and dﬁplication of components for parallel operation were key to the performance
gains. Almost half of the external RAM accesses were removed from the FPGA design.
by incorporating an iﬁtemal register file. This reduction reducéd the nﬁmber of states
needed to process an ‘imagé increasing the imé.ge frame rate by 13% and decreased v/o.
traffic on the bus by 47%. Adding control lines to the ALU components, thus éliminating
unnecessary switching of combination logic blocks, furthér reduced power reqﬁirements.
The 22 mm? ASIC consumes an estimated 430 mW of power when operating at the

maximum frequency of 17 MHz.
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A LOW POWER
APPLICATION-SPECIFIC INTEGRATED CIRCUIT (ASIC)
IMPLEMENTATION OF WAVELET

TRANSFORM / INVERSE TRANSFORM

I Introduction

1.1 Introduction

This document présents a piece in an overall research éffort being conducted by
the Dayton Area Graduation Studies Institutes (DAGSI). Currently, students at ‘Air Force
Institute of Technology (AFIT), University of Cin_cinnati (U0, University of bayton '
(UD), and Ohio State University (OSU) are invo]véd with thé effort of advancéd'
compressmn of video and audio commumcatlons and large image compress1on Wavelet -
image compression using Field Programmable Gate Arrays (FPGA) is the focus of the
UD research. This thesis effort expands upon image compression research by -
implementing the Haar transform/inverse transform on an Application—Speciﬁn:Integrated :
Circuit (AS.IC). | |

The main effort of this research was to create an ASIC with the same functionality
as the existing Very High Speed Integrated Circuit Hardware Description Language

(VHDL) behavioral description of the FPGA design. Efforts were not made to alter the




speciﬁc wavelet chosen for image compression/decompression. Savings in area, speed,
and power are the primary goal. While a mathematical analysis of wavelets was not
explored, a brief discussion of wavelets and their properties accompany this thesis to

provide a theoretical basis.

1.2 Problem Statement

Image processing has always been a slow and difficult task since image .resoluti'on
is directly tied to the number of sample points taken. To increase resolution, one has to
increase the number of sample points. As the number of samplé points increases, so does
the time necessary to complete the computations (1). By using the 2-D Haar transform, a
speedup is realized since the transform compresses the image information into a minimal
number of coefficients. The quality of the reconstructed imagc obtained from the Haar
transform is satisfactory for many applications including this research effort. B‘y
quanfizing the wavelet coefficients, a greater compression ratio is attained allowing for a
faster transrrﬁssion rate. Quantizing the wavelet coefficients causes some image
degradation, however, the tradeof_f betWeén the speed Qf transmitting thé data and the loss
of irhage integrity is necessary. ane the compressed image is received the reverse
transform is applied leaving thé original image with only a minimal loss of integrity. The
integrity loss is relative to the level of quantization and thresholding pérformed. For
many applications, the speedup obtained by transfqrming and quantizing the image

greatly outweighs the minimal loss of the image integrity (2).




The current technology has been mapped on an Annapolis Microsystems
Wildforce board (3). The board consists of 5 Xilinx FPGA 4062XL chips with up to
2Mbytes of SRAM per chip. A PCl interface exists on the board providing several /O
options. External FIFOs, DMA, and a reconfigurable Crossbar between FPGAs are
among the I/O options.

The Wavelet ASIC research effort replaces the 5 FPGA board with a single ASIC.

Figure 1. Wildforce Board (4)

1.3 Methodology

Converting from the FPGA design to an ASIC design required many iterative
design steps. The ﬁrst step is to compile and execute the existing VHDL behavioral
code. Understanding how the current implementation operates is the key to translating
and improving the code. Second, optimizations are performed to obtain a performance

speedup, reduced area, and reduced power consumption. Next, a new behavioral VHDL




description is written to reflect the optimizations and tested. The new description is built

with manageable blocks for easier implementation. A 9-bit adder is an example of a

manageable block since it performs one function. Each block undergoes transitions from

a behavioral description to a structural description and then to a physical layout. Each
step is tested and revisited until it satisfies the required speed, area, power, and
functionality criteria. Selected blocks are grouped together and tested for further

verification. The final step is to test all blocks together.

1.4 Constraints and Assumptions

Validatioﬁ of the FPGA behavioral code is assumed since it has been observed to
produce ic_;xpected results for sample images. Additionally, the Haar transférm
‘ ifnplementation df the code is assumed correct. Mathematical operations performed in .
tiw code ;?Vere alt@;red only to reduce the time to do the calculations. The ﬁnal ASIC
design pfbcess w:és verified against the behavioral VHDL code and produced identical

results.

1.5 Materials and Equipment

All of the design tools used to create the layout operate in a UNIX environment.
The first tool was the Synopsys System Simulator, (VHDLAN), (5). It tested the
behavioral, structﬁral, and functional aspects of the design. Another tool used was the
Synopsys Design Analyzer (5), whichv produces a gate level layout of the behavioral

description. A schematic based design tool, Synopsys Graphical Environment, (SGE),




(5), was used to produce a structural level description of the VHDL code. Netlists are
_also produced by SGE, which are used to obtain the final transistor layout. Octools (6)
translated the netlist into a transistor layout. Magic (7), is used to view and edit the
layout produced by Octools, as well as to produce a transistor layout design. The layout
level of the design is tested with two other tools, IRSIM (8), which tested the
- functionality of the transistor layout by performing a logic level test and High Accuracy
Simulation Program with Integrated Circuit Emphasis (HSPICE) (9,10,1 1),:_which tested

the functionality of the transistor layout with emphasis on accurate timing of the circuit.

1.6 Yhes_is 0verview'

This document is organized into 6 chapters. The first chapter provides an
iﬁtro’duct_ion, overview of ASIC_.design,' the steps used in the design process, and the tools
needed to complete the ASIC‘. design. .

| Chaptér II summarizes current research in wavelet/transform technology.
Research in ASIC design is also presented. Background research in FPGA design is also
described.

Chapter III begins by stating the goals of the Wavelet ASIC. The ori ginal VHDL -
behavioral code is then analyzed. Next, the steps taken to éxecute the Haar transform and -
inverse Haar transform are discussed in detail. Optimizations of the original design are
then presénted. The next Section discusses the design of the new syntheéizeable VHDL

code. The chapter finishes by describing the causes of image degradation.




Chapter IV presents the design at the component level of abstraction. First, the
design steps used to create a component are listed. Each component, as well as each of
the main logic blocks, is described. Next, the different state machines are discussed
along with the design choices made to create them. The custom built internal register file -
is described in detail. Next, the top-level signals are listed along with their functionality.
Finally, the system data buses are discussed.

Chapter V focuses on the verification and validation of the design. Tests made to
the original VHDL behavioral code are discussed first. The design cycle is discussed
along with the tests conducted at each step. The testing of the individuel cemponent is
also described. Finally, the read/write logic is discussed.

In Chapter VI, research conclﬁsions are presented. Research goals end
accomplishments are discussed. The cﬁapter concludes with suggestions for future work

“for both the VHDL level, as well as the component level of research.




II. Literature Review

2.1 Intrqduction

There is an enormous amount of research in transforms. For over 30 years, Fast
Fourier Transforms have been the topic of many booké (12). Wavelet transforms, in
contrast, are relative newcomers but they have spawned many ﬁew signal proceésing
algorithms over the past 10 to 15 years (13). A brief discuSsioh ofh'the 2D Wavelet
T ranéform is i)resented along with an introduction to the Haar wavelet. Wévelets :
introduce various tradeoffs with respect to power, timing, and chip:aréa; A small number
of wavelets were énalyzed for their specific impact in these areas with respect to ASIC
design. Only a few theses were found' that involved end—tc}—end chip design. Specific
points from these theses are diécussed along with their relevance to the Waivelet ASIC
research. The chapter concludes by describing the FPGA design of the Haar Wavelet

transform/inverse transform.

2.2 2D Wavelet Transform

The wavelet transform is popuiar for use in encoding a signal. After
transformation, the input is separated into two sequence‘s. The average values of the
original input are represented in the first sequence while changes are represented in the
second sequence. In other words, the first sequence describes the general trend of the

input and the other sequence shows departures from that trend (14). There are an infinite




number of wavelet transforms and the particular criteria for choosing one over another is
application specific (14). The 2D wavelet transform is an example of a wavelet
transform that exhibits characteristics useful to image processing (2).

Prior to the transform, an image is digitized and represented as a two-dimensional
matrix of pixels. Each pixel value represents an intensity and color value as sampled at
that point. Normally, there is a high correlation between adjacent pixels. Correlation
between neighboring pixels results in redundancy in image information which is
exploited by the transform. The resulting data is ébmpress’ed into a compact reversible
transform of the original image. There are two schemes associated with the
t;ansformation of images for encoding. The schemes are éither causal or noncausal. In_.a :
broad sense, causal transforms permjt a sequential encoding process while noncausal
fransforms require solving large systems of simultaneous equations. Noncausal
transforms pr_ovide a higher compression ratio but are harder to implement since they do
not use a sequentjal encoding method (15). For the ASIC design, the causal transform is
used.

The two most interesting characteristics of an image are its edges and texture.
The characteristics are expressed as variations in the intensity and color of the adjacent
pixels and these variations occur on several different scales. Edges of large objects are-
observable at low resolutions while edges of smaller objects are visible only at higher =
resolutions. At very high resolutions, even the texture of an image is observed as
- variations in intensity. While both edges and texture are distorted when applying

transforms, edges are more pefceptible to the human eye (15).




Each iteration of the 2D Wavelet transform produces four sub-images. First, a
row decomposition is performed and results in a high pass sub-image and a low pass sub-
image. The two sub-images are then decomposed by columns, which produce a total of
four sub-images (low-low, low-high, high-low, high-high) as shown in Figure 2. The
three high pass sub-images contain the edge information. For example, the ‘High, Low’
sub-image contains the horizontal high-pass information and the vertical low-pass

information (2).

|
|
|
!
Low,Low | High,Low
l
|
|

|
u
|

| |

Low,High ! High,High
: .
|
|

Figure 2. Sﬁb-images

The fourth sub-image (low-pass image) is then transformed again producing four
more sub-images with similar information but with lower resolution. The steps are
repeated for a desired number of iterations. Usually the low-pass image after several
iterations doesn't contain any more desirable information so the iteration is ceased (15).

Multiple passes are performed because image intensity changes may occur

gradually. To localize the change in intensity, a low pass filter is applied to the image




which halves the intensity range. The divided intensity range is then examined for
changes. By performing multiple passes, intensity variations are obtained at different
scales. The multiple step transform allows both gradual changes as well as sharp
transitions to be localized and saved for reconstruction of the image. The process of
obtaining edge information at various scales is called multiscale edge detection and is
very useful for image compression (15).

Wavelet compression is effective because the wavelet transform exploits the
correlations in a signal. 1D transforms only exploit correlations in a small segment. 2D
transforms find correlations within a region. The 2D transform, therefore increases the
compression ratio (4). The increased compression ratio is an advantage of the 2D -
wavelet compared to other transforms (16).

Another significant advantage of the wavelet transform (4) is that it solves the -
synchronization problem between multirﬁedia content streams such as adjacent video
signals. Synchronization is also an issue in wireless LAN and Internet communications.
In order to achieve synchronization, a tim_e—control mechanism is needed. ‘A 1D audio
signal can be converted into a 2D signal to form an audio image. By attaching the audio
image to the video image, synchronization is achieved (4).

In this section, the 2D wavelet transform and its application to image proc_essing
was discussed. For a more detailed analysis of wavelets, the interested reader is

encouraged to consult (17).
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2.3 Haar Wavelet

The wavelet chosen for the ASIC design, the Haar wavelet, is possibly the
simplest of all the wavelets. Computation of the Haar wavelet is accomplished by simply -
averaging and differencing the data. These simple calculations are what make the Haar
wavelet suitable for an ASIC implementation. Two types of coefﬁciénts are obtained
from the transform. Scaling coefficients are obtained by averaging two adjacent pixels.
These scaling coefficients represent a course approximation of the image. Wavelet
coefficients are obtained from the differencing of two adjacent pixels. .Wavelet
coefficients contain the fine details of the image.

The Haar wavelet was chosen for its simplicity and speed of computation.
Computation of the scaling coefficients requires adding two pixel values and dividing by
two. . Calculation of the wavelet coefficients requires subtracting two pixel values and -
dividing by two. The inverse transform simply requires subtraction and addition. Using
logical shifts to perform division eliminates the need for a complex divide unit.
Furthermore, implementing a logical shift in hardware requires much less power and
space than an arithmetic logic unit (ALU). Given the computational requirements,.the
Haar wavelet is a simple and easy to implement transform. Computational simplicity .
makes the Haar transform a perfect choice for an initial design implementation. Further
research is being conducted by UD to see if any advantages exist for using different

transforms for their research effort.
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2.4 History of Designs

Iniage compression is a required in many applications. One such application is in
digital photography. Storing high-resolution images requi;es a significant amount of
memory. Better compression results in more images being stored on ab givgn stbrage
media. Qne sucﬁ effort involved designing a VLSI chip for Wavelet Image Cofnpression
(18). | |

The Joint i’hotographié Experts Group (JPEG) image compression al gofithr'n is
widely uséd for reAduction>of image dafa. JPEG is'a real-time video/image processing
application baseddon the Discrete Cosine Transform. Howevef, JPEG has some |
drawbacks, such as artifacts being produced in the decompressed image. The aftifa‘cts are
especially evident at the borders of the 8;(8 sub-image and have resulted in exploration of .
éther methods fof image compression. Schwarzenberg’s VLSI chip design for Wavelet
i>mage compression is based upon‘_wavelet transforms (18). A special Integrated Circuit
(IC) was developgd to perform image compressioﬁ since software implementations of
qompreséing eveﬁ one still image requires a very long time. The speed of the
Schwarzenberg’s transform chip Was obtained by performing certain oberations in
parailel (18).

Schwarzenberg us'es a Separable two—dimensioﬂal wavelet-transform. Performing
a one-dimensionai transfoﬁn on tﬁe rows and then on the columns produces ;1 separable
2-D transform. Schwarzenberg’sldesign used internal RAM for the one-dimensional
transforms allowing fof increased speed since external RAM access was minimized.

Since an ASIC wasn’t actually built, valid operation of the design was based on the
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synthesized code. The synthesized code performed identical to that of the software
version of the wavelet compression (18). The FPGA design uses off-chip RAM to store
intermedr:ate values. The utilization of on chip memory is applied to the Wavelet ASIC
transform design to gain speed.

Adother research effort involved implementing a VLSI architecture for 2-D
discrete \;vavelet rransfonns (DWT). The architecture ‘was designed to process input
signals in real—time. The VLSI DWT design used three programmable parallel filters, a
storage umt and a control unit, which minimized the hardware costs. The 2-D DWT
de31gn outperformed the d1rect approach, wh1ch uses the l—D DWT. The direct approach
only executes the transform in a row like fashion, which exploits correlatlons in small
segments':,.not‘ in regions. - The direct approach has malry sixortcomings such as a lorrg
lqtency trme and the requirement for a large memory space. Becaﬁse of these }
shortcomings the 1-D DWT isn’t widely used. The VLSI DWT approach had
i)erformance benefits over a direct apr)roach makirlg if suirable for many re.al-time
video/image applications (19).

| Singh, et al. (20), designed another application using a 2-D discrete wavelet
transforrrn. Parallel computatron of the wavelet was proposed. The design is modular
rrlaking it scalable to different levels of wavelet decomposition. A prototype architecture
was implemented for an 8 x 8 image. The Singh architectrlre \ras synthesized and
verified. Then a iayout was designed in Cadence. The Singh design boasts fewer latches :
by utilizing control pipelining to generate the control signals. Control pipelining |

eliminated the need for latches for the horizontal dimension of the first stage processing
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elements. The design used 3 stages of wavelet decomposition (20). The Haar wavelet
implemented in the Wavelet ASIC also incorporates a 3-stage wavelet transform.
Zhang, et al. (21), proposed a 3D DWT. The 3-D transform is decomposed into

three steps. Each step is a 1-D transform in the x, y, and z direction. Although the 3-D
DWT outperforms the 2-D DWT by 40-90%, the 2-D and 1-D transforms still have their
uses (21). The number of coefficients is proportional to the accuracy of the transform.
Furthermore, as the number of coefficients increases, so does the time it takes to compute -
the transform. The 3-D DWT architecture was imﬁlemented with minimal "érea and
pfedic’ts the consumption of less power. Low power was achieved in the 3-:D DWT:
design by using low powef building block cells, uéing central control design, which
minimizes circuit complexity, eliminating redundaﬁt médules, and by consfantly :
éompromising tradeoffs of power, speed, and circﬁit éomplexity. The 3-D DWT design
was verified with- Synopsys software énd is reported t§ use only 0.5W of power _witﬁ a
total delay of 91.65 ns while operating at .a frequency of 272 MHz (21).

| Another architecture was proposed by Lafruit, et al. (22), which greétly reduced
power and memory usage. Lafruit’s architecture reads the image déta line by line, which
results in'a great area savings for on-chip storage. The method of ;eadihg Iiné by line
reduces complexity, which in turn reduces power consumption (22). Reading the data
line by line was not used in the Wave]ét ASIC design but an attempt to minimize the
number of reads and writes was a goal. The Wavelet ASIC design uses internalvregisters
to store image pixel values until the computation is completed and the resuits are written
to memory yielding a speedup over the existing methodology. As with Lafruit, et al.

reduction of power is obtained by minimizing memory access (22).
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Hunt (23) explored some of the design issues associated with VLSI designs.
Among the issues were the choices for synchronous versus asynchronous timing.
Synchronous timing eliminates race conditions and other potential hazards by reducing or
iﬁcreasing the clock cycle time. The speed of combinational circuitry is not a concern if
the clock cycle time is adjusted to account for the circuitry’s operating speed. Power
consumption of clock circuitry, however, is quite large since the clock is always
switching. Switching is what uses power in CMOS designs. With an asynchronous
design the power and area are reduced. However, with the absence of a cldck, extra
cpntrol circuitry is needed which sometimes offsets the area sﬁvings. With synchronous
circuits, the speed is directly tied to the longest delay. An attempt to equally distribute‘ ,
the workload across all states should be made. thimizing portions of a synchronous
design, which are not in slow sections of the code doesn’t increase performance: With
asynchronous circuits the opposite is true. Since the next stage is waiting on- the previous
stage, the sooner it is completed the better (23). Aspects of both synchronous and
asynchronous timing are used in the design of ASIC research effort.

Another design choice is deciding between performing operations in parallel by -
- replicating components or operating in a serial fashion. For example, one can choose to
use a single 32-bit adder and perform consecutive additions or replicate the:-adder and do
additions in parallel. The former needs less die aréa but takes a longer time to compute
which decreases throughput. The complexity of a single adder design is also ihcreased.
By replicating the adder, one can achieve faster operation and higher throughput. The

cost is an increase in die area. The control circuitry is decreased in the parallel design but
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not enough to offset the replication of components (23). Tradeoffs between adding extra
states and parallelism are a major part of the Wavelet ASIC research.

* Hauser looked into VLSI concerns, as well as Discrete Fourier Transform (DFT)
implementations and their advantages of being placed on a chip (1). The DFT uses a
finite set of sample points making it suitable for implementation on a digital computer
Again, as the number of sample points grow, the time to compute the transformand th§
power needed to perform the computation also increases. Since the DFT uses
multiplications to execute, time and power usage are issues.

Winograd demonstrated a reduction in the number of multiplications required by

- the DFT in 1978 (1). The class of algorithms known as the Winograd Foutier Transform

Algorithms (WFTs) is able to compute a DFT with a minimal number of multiplications.

The drawback tothe WFT is the size of the algorithm. In other words, the size doesn't

“easily map to that of a VLSI chip. Hauser showed by using the Good-Thomas Prime

Factor Algorithm (PFA) in conjunction with the WFT, the size of the algorithm is
reduced and easily maps onto that of a VLSI chip (1). Since the goals of the Wavelet
ASIC are low power and fast computation, the Haar wavelet transform is the best choice

because it requires only addition, subtraction, and shifting to compute it's coefficients.

2.5 Current Research

Research at the University of Dayton implements the Haar wavelet fransform
using a Field Programmable Gate Array (FPGA) (Figure 3). An image is captured via a

camera and then transformed, quantized, and encoded creating a compressed image. To
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retrieve the original image, the process is reversed. The reconstructed image is the

output from the inverse transform step.

Camera and

Frame Grabber Wavelet Corhpression
P T | ."—_____—_—___—_______"___-_——___'""":
; P
. . '
_}@_’ il: Transform y| Quantizer »| Encoding ;
5 ¥ :
e N S |

<< Compressed Image Data Transmission <<

Wavelet De-compression

Figure 3. Image Compression/Decompression Flowchart

The FPGA design starts with a behavioral VHDL c'odevlevel description. The
VHDL code is used to program the FPGAs to perform the required tasks. The transform
portion of the design is driven by the top level file, Compression.vhd. The
Compression. vhd file uses 5 other VHDL files to perform the transform of the image. As
Figure 4 shows, the image is processed first by TOWS and then by c_olumns.f First, one row
is read in avnd‘ packed. Next, the Haar transform is applied. After the row has been
transformed it is unpacked. The three-step process is executed on all the rows. Next, the -

image is processed in column order. One column is read in and packed. Next, the
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column is transformed. After the column has been transformed it is unpacked. The three-
st.ep process is executed on all the columns. Three iterations of the row/column process
are executed by the transform portion of the FGPA design. The files used by
Compression.vhd and the@r functionality are listed below. -

Compression.vhd — Implements the 5 VHDL files listed in Figure 4,

- Pack4row.vhd, Pack4Column.vhd - Packs four 8-bit pixel valués into a
single 32-bit integer. Packing the data speeds up the wavelet transform -
4-fold. Pack4row.vhd packs an image pixel row to % its original size;
Péck4Column.vhd packs an image pixel column.

HaarVideo.vhd — Transforms one row/column of image data into wavelet
coefficients (High Frequency coefficients) and scalfng function -
coefficients (Low Frequen¢y coefﬁcients) -

Unpack4row.vhd, Unpack4Column; vhd — Unpacks four 8-bit pixel values
from a single 32-bit integer. Unpack4row.vhd unpacks: pixels in an entire
image pixel row; Unpack4Column.vhd unpacks pixels in an entire image
pixel column.

The inverse transform half of the design is driven by the top level file,
Decompression.vhd. The Decompression.vhd file uses 5 other VHDL files to perform the
transform of the image. As Figure 5 shows, the image is processed first by columns and
then by rows. First, one column is read in and packed. Next, the Inverse Haar transform
is api)lied. After the column has been inverse transformed it is unpacked. The three-step
process is executed on all the columns. Next, the image is processed in row order.: One

row is read in and packed. Next, the row is inverse transformed. After the row has been
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Compression.vhd

Pack4row.vhd Unpack4row.vhd Pack4Column.vhd Unpack4C01umn..vhd
A 4
HaarVideo.vhd
< <
‘Loop Through All Rows Loop Through All Columns
4
Loop Through Multiresolution Levels

Figure 4. Compression.vhd File Flowchart (4)

inverse transformed it is unpacked. The three-step process is executed on all the rows.

The inverse transform portion of the FPGA design executes three iterations of the

column/row process. The files used by Decompression.vhd and their functionality are

listed below.

Decompression.vhd — Implements the 5 VHDL files listed in Figure 5.
Pack4row.vhd, Pack4Column.vhd — Same as in Compression.vhd.
InvhaarVideo.vhd — Inverse transforms wavelet coefficients (High
Frequency coefficients) and scaling function coefficients (Low Frequency -
coefficients) into one row/column of image data.

Unpack4Column.vhd, Unpack4row.vhd — Same as in Compression.vhd.
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Decompression.vhd

Pack4column.vhd Unpack4colurhn.vhd Packdrow.vhd Unpack4row.vhd
A 4
InvhaarVideo.vhd
< . - <
~ Loop Through All Columns Loop Through All Rows
«
Looﬁ Through Multiresolution Levels

Figure 5. Decompression.vhd File Flowchart (4)

- VHDL files for the main components are synthesized by the Wildforce
system and the results are programmed onto the Wildforce board FPGAs (3). Software
i'nferfaces are used to control the programmed che on the FPGA . First, the front-end
code., written in C, is used to load an image into memory. The Wildforce FPGA
imp]:ementation can héndle ifr;age sizes of 16 x 16, 32‘x 32, 64 x 64, 128 x 128, 256 x
256,512 x 512, and 1024 x 1024 square pixels. After loading the image, the front-end
codeAgives control to the Compress.vhd component by granting memory accesé. The
image data is. proqessed as shown in Figure 4. Wﬁen fhe Compress. vhd component
completes, tl;e software takes control and simﬁlates transmission of the compressed

image. After simulated transmission, control is given to the Decompress.vhd (Figure 5)
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component, which decodes the image data and executes the inverse transform. After the
image has been reconstructed, another program, written in C, 1s used to display the
image. The image has some degradation but is acceptable for many applications.

Static Random Access Memory (SRAM), which is used to store the image data, is
located on a separate FPGA. The memory access time is two clock cycles from memory
read to valid data on the data lines. A write operation takes one clock cycle. The bus
controller and the memory controller are contained oni other FPGA:s.

Testing individual pieces as they were converted to FPGA compatible software
was accomplished by running the other components not yet converted with the ones now
on the FPGAs. Funcﬁonality of the VHDL code was demonstrated when a recognizable
image appeared on the screen. The FPGA implementation has run at clock speeds up to
20 MHz. Advancements are qurrently in work to decrease the execution time of both the

transform and inverse transform (4).

2.6 Summary

This chapter described many past énd present research projects. First, the 2-D
wavelet transform was analyzed for its applications relating to image processing. Next,
the Haar wavelet was introduced. The Haar wavelet was chosen for the ASIC
transform/inverse transform because of its siniplicity. After introducing the Haar
wavelet, research using other transforms was studied to gain an overall understanding

about their applications relating to image processing. Finally, specific details from
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different ASIC designs were studied. Many of the lessons learned from the different

ASIC research efforts are applied to the Wavelet ASIC design.
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III. Design Overview

3.1 Introduction

The behavioral VHDL code used to implement the Haar transform/inverse
transform was obtained from the Universify of Dayton (UD) (4). Since the supplied
VHDL code was written for FPGAs it wasn't readily synthesizeable and many changes
were needed. The steps taken to translate the FPGA VHDL code to synthesizeable code
are discussed in this chapter. Places to improve the code are described. The design flow
of the synthesizeable VHDL code is explained and the differences between the FPGA
code and the synthesizeable code are highlighted. Finally, degradation due to quantizing, -
thresholding, and shifting are discussed along with its impact on the usefulness of the

image.

3.2 Goals

The goals of the ASIC research were directly tied with the current parameters of
Wild Force Board application. Using the maximum operating speed of 20 MHz and the
total number of states needed to transform one image, the FPGA design transforms one
image every 196.609 ms. By increasing the operating speed and/or decreasing the
number of states needed to process an image, the ASIC design will increase the frame
rate. Adding control signals to the ALU components forcing them to switch only when
necessary will minimize power usage. Chip area will be minimized by custom designing .

critical portions of the Wavelet ASIC. The FPGA implementation supports image sizes
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from 16 x 16 to 1024 x 1024. For simplicity, the Wavelet ASIC uses a set image size of

512 x 512.

3.3 Analysis of Original Code

The analysis process began by compiling and testing the behavioral
VHDL code received from UD. Initial tests were developed to determine the order pixels
were accessed. Next, different operations performed on the pixels were analyzed.
Operations performed on the pixels varied dependin g on the iteration of the transform
and where in the image the current pixel information was obtained. The code was
analyzed to determine the order of algorithm operations. Figure 6 shows the design flow
of the FPGA code for the transform section. Only the specifics for the row operations are :
shown. Column operations occur in the same manner as that of the rows. The only
difference is in the order the pixels are processed. Row operations read in the pixels from -
left to right. The column operations read in the pixels from the top to bottom.

The first step in the process is the packing of data. The FPGA implementation
contained no internal storage, requiring intermediate values to be stored in off chip RAM. -
To minimize the RAM accesvses the data Was packed for later retrieval. Since pixel
information only exists in the 8 least significant bits of a 32-bit memory word, the FPGA
impleméntation reads in four locations and packs them into one 32-bit word. The 32-bits
are then stored back to RAM for later retrieval. Subsequently all memory read accesses

retrieve 4 pixels instead of only one.
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The next step is the transform, which operates on the packed data. The packed

data is read in, transformed, and written back to RAM. Once the packed data has been

Wait for Grant .
\ Initialize image

variables
Set variables for | |
Row operations™ |
Y
Done Read 4 Pack into .
Reading g-bit | 32-bit > ga’t‘t‘:tpﬁii
Row? Pixels Word ato
Calculate
Read 2 4 Wavelets Write
32-bit and 4 Scalers » Transformed
Words (Transform) Data to RAM
Unpack .
?26 ?:Jditz ) into 8 values: Write 8 valuesg
W(‘)r ds "] 4 Wavelets "] ToRAM
and 4 Scalers

Transform Done Reset
Reading All With three All
Columns .
passes? Variables
¢ Yes

Sﬁgntlze Encode

Threshold > (not doing

The Data this step)

Figure 6. Flowchart Showing Transform Steps of FPGA Behavioral Code

25




transformed it is read in, unpacked, and stored as 8-bit pixel information within a 32-bit
word. Three transform passes are performed on each image. During each subsequent
pass the image size is decreased by a factor of four. The first pass processes an image
size of 512 by 512 square pixels. The second pass processes an image size of 256 by 256
square pixels. The third and final pass processes an image size of 128 by 128 square
pixels (Figure 7).

During the first pass, the transform processes the original image. Each
subsequent pass bperates on the scaling coefficients produced by the previous pass
(Figure 8). Details of the subsequent passes of the wavelet transform are e‘xplained in
Section 3.5. Each iteration only alters the original position of the current image i.e. the
Ihemory locations of the 256 by 256 square image are read in. After being‘ calculated, the
coefficients are written out to the same memory locations of the original 256 by 256
square image. After the three passes are performed, the image is quantized, thresholded
and encoded. Details of the quantize and threshold steps are contained in section 3.4.
The encode step is not part of the ASIC research and will not be discussed. After three
passes, the transform is complete. Next, the inverse transform is applied.

The second half of the FPGA design recreates the original image from the wavelet .
transformed data file. The first step is to decode the encoded data file. Decoding details
are not addressed, as encoding was not implemented in the ASIC development effort.
The inverse transform process. is simply the reverse of the transform process. The Haar
transformed data is read in, packed, and written back out to memory. The packed ’data is

then later read back in, inverse transformed, and written back out to memory. Finally, the
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Figure 8. Result of One Transform Iteration

‘restored packed integer image is read back in, unpacked, and then written back to :
memory.
One difference between the transform and inverse transform is how the data is

accessed. During the inverse transform, data is processed first by columns and then by
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rows, which is opposite to that of the transform process. Another difference is the -
operations used to inverse transform the data. Details of the inverse transform operations
are discussed in section 3.5. The order in which the memory locations are accessed is
also different. The transform step operates on adjacent pixels creating coefficients. The
coefficients are written to separate halves of the image. The inverse transform then
operates on the coefficients. In other words, the memory accesses for the inverse
transform are not sequential as in the transform step.

There are still three iterations. After each iteration the image is increaséd by four.
That is, the first pass processes an image size of 128 by 128 square pixels. The second
pass processes an image size of 256 by 256 square pixels. The third and final pass
processes an image size of 512 by 512 square pixels. The first and second pass produce
coefficients relative to their respective transform operations. The third pass produces the
transform-degraded values ofj the original pi){els.;Details of the degradation are explained
in the section 3.10.

The FPGA transform"'design takes 3,932,176 states to complete a three level
transform and quantization of an image. The time to process one frame is 196.609 ms at
a 20MHz operating speed. Appendix C contains a detailed breakdown of states for the
FPGA design. The frame rate only measures the processing time of an image that already
exists in memory. Associated operations like loading a new image into memory and
transmitting the image would obviously affect the; frame rate.

The FPGA code can process images of different sizes. The image width and
height are located in memory locations one and two, respectively. When the FPGA code

reads in the image size information, the internal counters are set to indicate the size of the
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image being processed. A 512 by 512 square image is the only size image handled in the
ASIC research, therefore, the details of dealing with the different sized images is not

addressed. The details for quantizing and thresholding are discussed next.

3.4 Quantize and Threshold Rules

In the FPGA code, the quantize step is performed after both the row and the
column transforms have been completed for all three iterations. The specific rules for
quantizing and thresholding are presented next. SEe (24) for the specific, detailed
ihformation on the qﬁantizing and threshélding process and theory. For explanation
purposeé, numbers are assigned to each quadrant. The nu:mbering (Figure 9) is used to

illustrate the different quantizing and thresholding rules for each quadrant.
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Figure 9. Quadrant Layout

In all passes the scaling coefficients are left alone. The reason some quadrants in Figure

9 have the same number is that the rules for processing those quadrants are the same.
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The values are represented in hardware as 8 bits of data. When speaking of position of

the bits the number is referenced from left to right as bit 7, bit 6, ..., bit 1, bit 0. Bit 0 is

the least significant bit (LSB) and bit 7 is the most significant bit (MSB). The quantize

and threshold steps alter the data which increases the compression ratio. The following

quantization and threshold rules were taken straight from the FPGA code. The steps are

executed in order for each value.

Quadrants 0:

Steps:

Quadrants 1:

Steps:

Quadrants 2:

Steps:

Quadrants 3:

Steps:

Quadrants 4:

Steps:

el ol

LECES

.. No altering of the data.

. If number is negative and the LSB is equal to ‘1’ then add 2 to the

number.

. Set the LSB equal to zero.

. If number is negative and one or more of the lower two bits are equal to
* ‘1’ then add 4 to the number.

Set low two bits equal to zero.

. If number is negative and one or more of the lower two bits are equal to

‘1’ then add 4 to the number.
Set low two bits equal to zero.
If value is less than —64 set equal to —64.

. If value is greater than 64 set equal to 64.

. If number is negative and one or more of the lower three bits are equal

to ‘1’ then add 8 to the number.
Set low three bits equal to zero.
If value is less than —64 set equal to —64.

. If value is greater than 64 set equal to 64.
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Quadrants 5:
Steps:
1. If number is negative and one or more of the lower three bits are equal
to ‘1’ then add 8 to the number.
2. Set low three bits equal to zero.
3. If value is less than —8 set equal to —8.
4. If value is greater than 8 set equal to 8.

Quadrants 6:
Steps: '

1. If number is negative and one or more of the lower four bits are equal

to ‘1’ then add 16 to the number.

Set low four bits equal to zero.

3. If value is less than -8 set equal to —8.

4. If value is greater than 8 set equal to 8.

®

3.5 Wavelet Transform/Inverse Transform portions of the code

The Haar transform is very simple. The scaling coefficient is the sum of
two pixels divided by two. The wavelet coefficient is the difference of two pixels divided:
by two. To retrieve the original pixel values the inverse Haar transform is executed. The
sum of the scaling coefficient and the wavelet coefficient retrieves the first pixel. .
Subtracting the wavelet coefficient from the scaling coefficient retrieves the second pixel.

The pixels are recovered with no loss in value. Table 1 depicts this process.

Pixel Value Scaler Wavelet inverse
Pixel 1 5|(5+6)/2=5.5 |(5-6)/2=-0.5 |5.5+(-0.5)=35
Pixel 2 6 55-(-05)=6

Table 1. Example of Transform/Inverse Transform

The image is transformed first by rows and then by columns. When the rows are
transformed the left side of the image space consists of scaling coefficients and the right

side of the image consists of wavelet coefficients (Figure 10. Image B). Next, the image
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is transformed by columns. When the column transform is complete the image consists

of four quadrants (Figure 10. Image C). Upper left is the scaling coefficients. The upper
right is wavelet coefficients showing the horizontal edges of the image. The lowerleft is
wavelet coefficients showing the vertical edges of the image. The bottom right quadrant

is wavelet coefficients showing the diagonal edges of the image (2).

Figure 10. Transform of Image

Figure 10, Image C, shows the first iteration of the transform. The second
iteration would only operate on thé upper left quadrant (Figure 10. Image C). It would
produce the same four quadrants as the first iteration but of different resolution levels (2).
The third pass would operate on the upper left quadrant from the second iteration. The

résult of three iterations is shown in Figure 10, Image H.
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Figure 11. Quadrants of the Three Transform Passes

The inverse transform would é)perate on the image in reverse order to the
transform process by first processing the columns and then the rows. The first pass
Wouid operate on the squares labeled ‘0’ and ‘1’ in Figure 11. The second pass would
operate on the result of the first and the squares labeled with a “2°. The final pass would
operate on the whole image recovering the original image. Since the calculations are
being performed in hardware, fractional values are lost during integer division, and the
original image isn’t perfectly recovered. Other factors such as quantizing and
thresholding the data are the major reason for distortion in the final retrieved image. For
a more detailed description of these distortions, reference Section 3.10. Next, the steps

taken to convert from the FPGA VHDL code to synthesizeable code are discussed.
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3.6 Converting the Original FPGA Code to Synthesizeable Code

Once the behavioral level VHDL code was working it was necessary to convert it
to a synthesizeable form. Converting the FPGA compatible code to synthesizeable code
was a complex task. The following statement is an example of the coding style used in
the original VHDL behavioral code.

indx1(18 downto 0) <= indx(18 downto 0) + 10;
Similar types of statements occurred simultaneously in the behavioral VHDL code. The
first problem with above segment of code is the utilization of Bit vectors. AFIT synthesis
tools are not compatible with the bit vector construct (;‘)f the VHDL language. All bit
vectors had to be converted to individual bits, making the code longer and harder to
follow. The ‘+ signs were also inappropriate. The following analysis assumes that 4
additions occur simultaneously. At least three methods are available to implement:
additions. The first method implements four adders that operate simultaneously. The
second method places' each addition in a different state, thus solving the problem serially.
The second method takes four times as long to compute but requires only one adder.
Other combinations such as two adders and two states were explored.. An analysis of
extra states and replication of components was done to decide what combinations of
states and adders were best. The analysis is explained in section 4.6.
The tradeoffs for multiple additions are as follows:

1. Multiple adders vs;orking in parallel increase power usage and increase overall

area.
2. A single adder increases the execution time because extra states are needed.
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3. A combination of multiple adders and more states provided the best solution

for the ASIC design, allowing for some speedup without the area becomingtoo

large.

Many of the defined signals were not used> in the ori ginal behavioral VHDL code.
If two values are added they must be the same size since the ‘+” operator was used. For
example:- |

newaddress(18 downto 0) <= address(18 downto 0) + count(18 downto 0)
Evén if count only used four bits, count must be 19 bits long in order for the addition
operation to compile in VHDL. As part of generating synthesizeable VHDL, all
unnecessary bits were removed from the code.

Another non-synthesizeable portion of the behavioral VHDL was the code for the
&ata latcfles. Changes were requi;ed so latches wbuld properly synthesize. Figure 12
éhows ar; example of some code that was changed to synthesize properly. When the reset
ﬁne was placed before the clock edge detection liﬁe, as it was in the FPGA code, the
component wouldn’t synthesize. Figure 13 shows the conéct way to program a latch for

synthesis.

if (RESET ="'1") then
PAKPXVS5 <="0";
elsif ((CLOCK ='1") and ( CLOCK'event ) ) then
if (ReadPixel3 ='1") then
PAKPXVS5 <="1";
else —no change
PAKPXVS5 <= PAKPXVS;
end if;
end if;

Figure 12. Incorrect Way to Code a Latch
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if ((CLOCK ="'1") and ( CLOCK'event ) ) then
if (RESET ="1") then

PAKPXVS5 <="0"
elsif (ReadPixel3 ='1") then
PAKPXVS <="1"

else —no change
PAKPXVS5 <= PAKPXVS5;
end if;
end if;

Figure 13. Correct Way to Code a Latch

The FPGA code used many RAM accesses to process an image. With some
additional logic the RAM accesses were reduced. The details for reducing the Ram

accesses and the savings from the reduction are explained in the following section.
3.7 Optimizations on the Original Code

Analysis of the initial behavioral VHDL code showed that the three stages of
Wavelet transform operations (Pack, Transform, Unpack) could be combined reducing
RAM accesses by 47%. As with most designs, off-chip memory accesses are a
performance bottleneck. Minimizing the number of memory accesses greatly reduces the
overall executiorj time. The FPGA implementation included no internal data storage
provisions requiring RAM reads/writes of intermediate values to be stored in off-chip
memory. The inclusion of an internal register file eliminated the storing and retrieving of
intermediate values. Pixels were simply read in once, transformed, and written back out
to RAM. Appendix B analyzes the exact savings from combining the three memory

access steps. The additional steps to quantize and threshold the data were also
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incorporated with the column transform step. In the FPGA code, the quantize step is
performed after both the row transform and the column transform have been completed.
By incorporating the quantize step into the column transform step, one additional
memory access is eliminated. The details to the reductions in RAM accesses are
presented in Appendix B. Combining all the above operations eliminated all the reads
and writes the original code needed to execute the quantize step. For a 512 by 512 square
image the savings were 524,288 memory accesses. Of course, the logic was more
complex and the need for a 256 by 8-bit internal register file utilized more chip area. The
fotal chip area used by the internal register file and its associated address decode logic is
8,969,114 lambda®. See Appendix B. Savings of Ram Accesses, for detailed Read/Write

access numbers. Table 2 summarizes the total savings for a 512 by 512 image.

Total Ram Accesses by Old System 2,588,672
Total Ram Accesses by New System | 1,376,256

Savings over FPGA implementation 47%

Table 2. Total Savings in Ram Accesses

The next section explains the steps taken to develop the new synthesizeable VHDL code.

3.8 Developmen.t of the Synthesizeable VHDL Code

To constrain the scope of the research, noncritical portions of the FPGA design
were not implemented. The noncritical portions are explained in this section. The
specifics of the new VHDL behavioral code are also discussed. Detailed differences

between the ASIC and the FPGA design are addressed. Some of the logic used
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specifically for the FPGA design is incorporated in thé synthesizeable VHDL code. The
extra logic, ‘artifacts’ are listed.

The Encoder/Decoder portions of the original algorithm were not implemented as
part of the Wavelet ASIC design. The encoder simply reduced the transformed data file
for transmission while the decoder expanded the compressed file back to its original size.
Another functionality not implemented was the capability to process a variable size
image. Rather, a constant 512 x 512 image size was used for the ASIC research.
However, only a few minor design changes would be required to process any size image
smaller than 512 by 512.. The memory used by the FPGA started the image data at
location 10. Since no internal storage existed, data relevant to the operation was kept in
locations O through 9 and loaded every time it was needed. The same data memory
mapping was retained for the ASIC development. As the design progressed it was found
the data stored in locations O through 9 was not needed for the ASIC research. The
impact of the FPGA fnemory address offset added one stéte to each of the four state

machines use in thc ASIC.

The original VHDL code allowed for a variable input of the number of transform
levels to perform. Based on tests using the FPGA implementation, three transform levels
was determined to be the optimum number of levels to perform (4). Therefore, the ASIC
design used three transform levels for every image. Due to the hardwiring of thre¢ levels,
the transform counter was reduced to 2-bits. Anqther signal, icolumn, was reduced from
19-bits to 10 bits. It was originally 19-bits long to accommodate for the ‘+” operation
restrictions. Eliminating unnecessary signals made the code more compact and reduced

unnecessary steps later in the design process.
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Another change to the behavioral VHDL code was to break it into smaller more
manageable files. The original VHDL code for each main section (Transform, Quantize,
etc...) was contained in one file. To properly synthesize the design, smaller files, each
containing less logic, were needed. First, the state machine and the state control signals
were separated out. Next, all of the Arithmetic Logic Unit (ALU) type operations
" (Additions, Subtractions, Incrementers, etc...) were removed. Each of the operations was
moved to their own separate file. The signals necessary for the operations were passed as
input and output parameters to each file. Any component that could stand-alone was
- more efficiently implemented if synthesized by itself. Typically, design tools are more
- efficient when small modules are used.  Testing the modules is also much easier and
faster when it contains only a single operation.

Another artifact from the FPGA implementation code is bus arbitration. Bus
arbitration along with the other FPGA'’s artifacts is implemented in the event the ASIC -
design is ever